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ABSTRACT
Freezing of Gait (FOG) in Parkinson’s Disease (PD) is a
brief episodic impedance of movement that is mostly man-
ifested at the late stages of the PD. Accelerometer sensors
are widely utilized to collect dysfunctional movement time
series data stemming from patients with PD. In this work,
we propose a robust FOG predictive model that employs
a combination of wavelets and Conditional Random Fields
(CRF) to predict FOG episodes from low level FOG ac-
celerometer time series interleaved with normal movement
time series of PD patients. Specifically, in order to derive
and extract unique signature features of FOG time series,
we utilize wavelets to perform in-depth analysis of PD move-
ment spectral at multiple resolutions. We design a CRF that
leverages the extracted signature feature vectors to diligently
learn the underlying characteristics of FOG time series and
to effectively predict FOG episodes at their onsets. Our em-
pirical evaluations on a real PD dataset demonstrate that
our technique delivers enhanced prediction accuracies.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Algorithms, theory, experimentation.

Keywords
Freezing of Gait, Time Series Prediction, Wavelets, Condi-
tional Random Fields

1. INTRODUCTION
Parkinson Disease (PD) is a neurological disorder that

was discovered in 1817 by James Parkinson. It is caused
by the deficiency of striatal dopamine because of the loss
of nigrostriatal neurons [5]. The degeneration of the latter
neurons disrupts the limbic, visceromotor and sematormotor
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systems of the brain [4], causing the limbic and other brain
centers to relinquish influence and control of motor neurons.
This translates into the dysfunction of the body’s motor
systems, which is manifested by involuntary trembling of the
head, arms and legs. It also causes Bradykinesa (slowness)
and ”freezing” as the disease evolves.

The aforementioned freezing is mostly experienced at the
late stages of the Parkinson’s disease [3], and it is coined
Freezing of Gait (FOG). FOG is a brief episodic impedance
of movement, which is characterized by the inability of a
person (at rest) to commence movement. For a moving per-
son, FOG is governed by the abrupt halt in her motion,
despite efforts to resume movement. Another hallmark of
FOG is the involuntary trembling of the knees. [3] men-
tioned that FOG episodes are mostly observed when a pa-
tient starts moving or during turning movement. They also
alluded that FOG episodes occur briefly for up to 10 sec-
onds in most cases but may extend above 30 seconds in a
few occasions.

Despite these short durations, FOG takes a PD patient by
surprise, thus it requires patient monitoring. Besides, FOG
episodes can be accompanied by falls, which might lead to
body injuries. Patient monitoring or injuries stemming from
falls after FOG episodes might prompt an elevation of the
health care cost. The freezes and falls also cause patients
to become dependent on others and even discourages them
to move, thus depreciating their quality of life. Dopamine-
related medications have also not been successful in over-
coming FOG [11, 3]. Physicians and patients rely on certain
behavioral tactics to dampen the effects of FOG (e.g., walk-
ing to music or altering the body weight) [2]. One approach
that has been successful in reducing FOG symptoms is the
Rhythmic Auditory Simulation (RAS). However, for RAS
to work effectively, FOG episodes need to be properly de-
tected or predicted. Since PD is associated with trembling,
the movement patterns of such trembles, as well as FOG can
be captured by wearable sensors. [2] introduce a wearable
device that entails 3D-accelerometer sensors that record the
movement time-series of a PD patient.

With the significant drop in the prices and weights of sen-
sors, one approach that has garnered broad scale support
to collect and analyze Parkinson disease movement data is
the use of accelerometer sensors. It involves the use of sen-
sors for the convenient gathering of movement data from PD
patients as they go about their daily life activities. This ac-
celerometer sensor data entails elusive FOG movement pat-
terns that can be uncover using proper data mining tech-
niques. This can be eventually utilized to identify, detect or



predict FOG in PD. For instance, [2] propose an algorithm
that can detect FOG in real-time and provide context-aware
RAS to enhance gait in PD.

While other works [11, 6, 2] have proposed techniques to
detect FOG in PD from sensors, in this paper, we propose a
novel FOG prediction technique that utilizes a combination
of wavelets, vector quantization and Conditional Random
Fields (CRF) to predict high level FOG events from low
level accelerometer time series. A FOG predictor can be
used in a broad spectrum of health applications for patient
monitoring, to enhance the quality of life for PD patients,
and to erode health care cost.

1.1 Our Contributions
Distinguishing low level FOG time series (at its onset) in

the midst of normal movement time series is an insidious and
challenging problem. It requires the rigorous analysis of PD
movement time series obtained from accelerometer sensors.
We make two main contributions in this paper. First, we
devise a new feature selection approach for PD time series
data, which extracts unique signature feature vectors from
a FOG time series. The extracted features are employed
to effectively discriminate FOG time series from the normal
movement time series of PD patients. Specifically, we de-
compose the time domain PD movement time series using
dyadic wavelet transform to obtain its spectral. We then
perform in-depth analysis of the PD movement spectral at
multiple resolutions to detect elusive patterns within FOG
signals. Among others, we observe that at the onset of a
FOG signal, there is a significant difference in the wavelet
spectral sub-energy between a FOG episode and a normal
movement. This spectral energy difference is consistent and
sharper at several frequency resolutions. We utilize such
findings to derive signature feature vectors, which are em-
ployed to identify and distinguish FOG signals from normal
signals.

To effectively leverage the selected feature vectors in our
predictive model, we first study the probability density of
these features, and then cluster densely populated feature
vectors into several regions called voronoi regions through
the precess of vector quantization. We represent nearest
neighboring feature vector values in a given voronoi region
with the centroids of the given regions. All the resulting cen-
troids are utilized to create a codebook. We perform vector
quantization using the Linde-Buzo-Gray (LBG) algorithm
[8].

Our second contribution involves the proposal of a robust
FOG predictive model, which utilizes the aforementioned
wavelet feature vectors, the codebook, and the CRF, to pre-
dict an FOG episode at its onset with a high veracity. In
particular, we utilize the wavelet spectral features and the
codebook to train our CRF to find hidden trends from the
time series. Our CRF learns the underlying characteris-
tic of an FOG time series during gradient ascent and as-
signs weights to re-occurring patterns. In the testing phase,
our CRF utilizes the learned knowledge to determine FOG
in Parkinson’s disease with an enhance accuracy. Using a
Parkinson’s disease accelerometer sensor dataset [2], our em-
pirical evaluation illustrates that our technique delivers a
high prediction performance of more than 90% depending
on the sample window size.

The remainder of this paper is organized as follows. Sub-
section 1.2 discuses relevant related works while Section 2.1

describes the PD data acquisition process, the accelerome-
ter sensor dataset and formally defines the problem of FOG
prediction. In Section 3, we introduce a feature extraction
approach for PD time series using dyadic wavelet transform,
whereas in Section 4, we present our CRF predictive model.
Section 5 provides the empirical results of our conducted
experiments. We conclude in Section 6.

1.2 Related work
[6] propose a technique that employs wavelet to extract

feature vectors from EEG signals. They then use Back Prop-
agation Neural Network classifier and the extracted features
to classify FOG from the EEG signals. Our approach differs
from this work because we utilize CRF. Also, the study per-
formed by [6] is based on EEG signal while our work explores
accelerometer signals. [2] propose a technique that detects
FOG episodes from accelerometer data in real time. If their
technique identifies a FOG episode, it sends a message to an
RAS which triggers the patient to continue moving.

[11] presented a FOG detection technique that is based
on a freeze threshold term the Freeze Index. They derive
the latter index by examining the power spectra of vertical
linear acceleration. Our technique differs from this approach
in that we utilize wavelet and CRF to identify and predict
FOG episode. [6, 2, 1, 11] focuses on the detection of FOG
in Parkinson’s disease. However, FOG also occurs in other
neuro-related diseases.

2. PRELIMINARIES

2.1 Data Acquisition and Problem Definition
We utilize the Daphnet Freezing of Gait dataset which

was collected and made public by [2]. The data gather-
ing process was geared to capture FOG from wearable ac-
celerometer sensors. Prior to describing the accelerometer
sensor data, we first highlight the data collection process.
The data was collected at the Laboratory for Gait and Neu-
rodynamics at Tel Aviv Sourasky Medical Center. The data
was gathered from 10 PD patients, 7 males and 3 females
ranging from the age of 59 to 75 years with different stages of
PD. Two patients had frequent FOG episodes. During data
acquisition, apart from the aforementioned two patients, all
patients were on the off stage of their medication cycle.

The 10 patients were requested to carry out three move-
ment patterns. These include, 1) walking in a straight line,
2) walking randomly including the simulation of 360 degrees
turns, 3) daily life walking pattern which involves the de-
liberate movement from rooms to rooms, such as picking
up a coffee and back. In addition, while the patients were
moving, their movements were simultaneously video taped
by a physiotherapist to capture all FOG episodes. Another
physiotherapist labeled the current activity of each patient
as standing, walking, turning or freezing. After all data was
collected, the physiotherapists analyzed the video and com-
bined it with the manually labeled movements to create the
ground truth labels. They also used them to determine the
start times, end times and durations of the FOG episodes.

Three 3D-accelerometer sensors were used to record the
movements of each patient at a sampling rate of 64 Hz. One
sensor was attached around the ankle, the other above the
knee, and the third accelerometer sensor was placed on a belt
and wrapped around the hip of a patient. An accelerome-
ter measures the acceleration and orientation of the PD pa-



tients’ movements on three axes or dimensions. Namely, the
X, Y and Z axis. The X-axis collects readings about the
horizontal forward motion of a subject, whereas the upward
and downward movements are captured by the Y-axis. In
contrast, the Z-axis records the movement in the horizontal
lateral direction.

While four movement activities (i.e., standing, walking,
turning and freezing) were manually labeled by the physio-
therapists, the labels of standing, walking and turning were
categorized as ”no freezing”. As a result, the final ground
truth class labels for each 3D-accelerometer sensor reading
(of the publicly available Daphnet dataset) is either ”freez-
ing” or ”no freezing”. Throughout this work, we refer to the
”freezing” class as the FOG label, whereas the ”no freezing”
class is called the normal label. [2] reported that 8 out of
the 10 patients experienced FOG during the data gathering
process.

2.2 Problem Definition
Prior to the presentation of our FOG prediction technique,

we begin by formally articulating the problem we aspire to
solve in this paper. Consider that we are provided with
3D-accelerometer sensor readings stemming from the sensors
described in Section 2.1, which encapsulates the movement
time series of PD patients. The prime rational of this paper
is to craft a predictive model that predicts a high level FOG
episode from a low level sensor time series data at the onset
of the FOG episode. We should note that it is important to
predict FOG immediately as it starts, so that the predicted
results can be used by other systems (e.g., RAS) to alert
the patient or perform certain actions that can suppress the
FOG episode.

Definition 1. (Problem Definition): Consider a fi-
nite set E = {e1, e2} of movement classes, where e1 denotes
the normal movement and e2 represents the FOG episode.
Given E and an ordered observation sequence of accelerom-
eter sensor movement time series O = {o1, o2,⋯on}, where
each oi ∈ O represents three tri-axial accelerometer points
from three different sensors, and each tri-axial point ps(xi, yi, zi)
denotes a point from sensor s at time ti, and t1 < t2 < ti,
predict the Parkinson’s disease movement label ej ∈ E that
corresponds to the observation sequence O within a thresh-
old time τ .

To solve the problem in Definition 1, we propose a robust
FOG predictor that employs a novel combination of dyadic
wavelet transform, vector quantization and CRF to identify
and predict FOG episodes time series that are sandwiched
within normal movement time series of PD patients. At a
higher level, given the multi-sensor accelerometer data de-
scribed in Section 2.1, we first extract valuable feature vec-
tors that can be used to distinguish FOG time series from
normal movement time series by performing multi-resolution
wavelet decomposition through wavelet transform. Unlike
the Fourier transform which can analyze signals only in ei-
ther the time domain or frequency domain, wavelet trans-
form enables us to analyze the movement of PD patients in
both the time and frequency domain at the same time. Dur-
ing the spectral analysis of the collected time series, we ex-
tract signature features that can effectively discrimate FOG
episodes from normal signals. After the collection of all im-
portant feature vectors, we generate a codebook using vector
quantization to obtain centroids of neighboring feature vec-

tors. Subsequently, the extracted feature vectors are rep-
resented by their centroids. Finally, we then utilize CRF,
known for its strong inference probability to predict a FOG
given a sequence of codebook centroids.

In what follows, we present a technique to select vital
features vectors using wavelets in Section 3.2, and utilize
the extracted features for the design of a codebook using
vector quantization in Section 3.4.

3. DATA ANALYSIS

3.1 Fundamentals of Wavelet Transform
There are two major kinds of wavelet transforms. Namely,

Continuous Wavelet Transform (CWT) and Discrete Wavelet
Transform (DWT). A mother wavelet is required to perform
wavelet transform. Wavelet transform is achieved by the
dilation and translation of a mother wavelet ψ(x). In this
work, we utilize dyadic wavelets to extract feature vectors
for FOG prediction. Dyadic wavelets are also unknown as
Maximum Overlap Discrete Wavelet Transform (MODWT)
or Undecimated Wavelet Transform. Dyadic wavelet is a
slight mutation of DWT, hence they can be better described
by first introducing DWT.

The DWT of a function f(x) is given by

DWTψf(j, τ) = ∫
+∞

−∞

f(x)ψ∗j,τ(x)dx (1)

where ψj,τ = 1
2j
⋅ ψ (x−τ

j
), j ∈ Z is the dilation or scale,

τ ∈ Z is the translation and ψ∗(..) is the complex conjugate
of the mother wavelet. The mother wavelet is given by ψ(x)
and when scaled with j, it yields a scaling function ψj .

DWT decomposes a signal into fine and coarse wavelet co-
efficients at different resolutions or scales. Multi-Resolution
Analysis (MRA) using DWT can be accomplished by em-
ploying the algorithm proposed by Mallat [10]. The de-
composition of a sequence or signal starts at a scale J =
log2(N)− 1, where N is the length of the sequence. At each
scale j, DWT yields a fine coefficient called the approxima-
tion coefficient aj and a coarse coefficient termed the detail
coefficient dj . We will utilize some of these coefficients as
feature vectors for FOG prediction. The approximation co-
efficients correspond to the low pass filter h while the detail
coefficients correspond to the high pass filter g. The al-
gorithm iteratively moves from a higher scale j to a scale
j − 1. At each lower scale j − 1, the signal is subdivided
into low pass signal and high pass signal, and they are then
down-sampled. Down-sampling involves the reduction of the
number of samples of the signal by half of its original size.
The iteration continues and terminates at j = 0.

A major difference between MODWT and DWT is that
there is no down-sampling for MODWT. As a result, MODWT
consists of redundant features. In addition, while DWT re-
quires that the size of the input data be a multiple of a power
of two, MODWT has no restriction on the signal length, thus
making it more practical to utilize.

3.2 Feature Extraction
In this work, to extract features, for each of the three sen-

sors, we first determine a resultant 1D signal from the 3D
accelerometer sensor reading (i.e., the signals of the x, y, z-
axis) and analyze it separately. The formula for the resultant
signal is provided and discussed in Section 4.3. We depict
each 1D resultant signal as a collection of data points in the
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Figure 1: Ankle Sensor: Parkinson’s Disease Movement Spectral Analysis.

time domain. In digital signal processing, it is known that
the most important characteristics of a signal lie in the fre-
quency domain. Towards this end, we perform multi-scale
wavelet transform decomposition of each of the 1D resul-
tant time domain accelerometer reading. Specifically, we
commence the decomposition of the 1D accelerometer sig-
nal using the Daubechies 4 mother wavelet. At each scale
j, the MODWT generates an the approximation coefficient
aj which corresponds to the low pass filter h and a detail
coefficient dj that corresponds to the high pass filter g. For
instance, Figure 1 and Figure 3 illustrate the spectral of a
decomposed resultant FOG time series and a normal move-
ment time series of a PD patient for the ankle and hips
sensors, respectively. For each sensor type, we perform pair-
wise analysis of each FOG time series with its corresponding
normal movement time series at a given scale j to determine
important feature vectors. To accomplish this, we record all
the approximation and detail wavelet coefficients instituted
at each scale until the iteration stops at scale j = 0. After the
complete decomposition of the 1D signal which is associated
with the production of wavelet coefficients, we extract and
utilize a unique combination of the produced wavelet coeffi-
cients as feature vectors of our FOG prediction technique.

We repeat the same MODWT decomposition of the resul-
tant time-domain accelerometer signals for the other sensors,
and extract signature feature vectors that can be utilized
to effectively differentiate an FOG episode from a normal
movement time series, as articulated in the next section.

3.3 Feature Vector Selection
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Approximation Coefficients: During our rigorous analysis
of PD movement time series to find unique features that can
distinguish an FOG episode time series from a ”no freeze”
(i.e., normal) time series, we observe that the FOG sub-band
energies of the approximation and detail wavelet coefficients
were significantly higher than that of the normal movement
time series as shown in Figure 2 and Figure 4. For the ap-
proximation coefficients, we investigated the decay of the
sub-band energies across scales to avoid selecting sub-band
energies that are corrupted by noise. While the approxima-
tion sub-band energies at scale j = 7, j = 6 and j = 5 could be
used as good feature vectors, (since their sub-band energies
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Figure 3: Hip Sensor: Parkinson’s Disease Movement Detail Spectral Analysis.

can be employed to differentiate FOG from normal time se-
ries,) we choose the approximation sub-band energy at scale
j = 4 as our approximation feature vector for two reasons.
First, they are less susceptible to be corrupted by random
noise. Secondly, we aspire to detect FOG at its onset, this
means, we anticipate to encounter scenarios where the sam-
ple sizes of the time domain signals to be decomposed can
be as small as 170 points, hence the maximum j will be less
than 7.
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For all sensors, we compute the approximation sub-band
energies for j = 4. These approximation sub-band energies
are extracted and utilized as feature vectors.

Detail Coefficients: During our analysis of the detail wavelet
coefficients, we observe that they comprise of salient regions
that hold unique characteristics of the signal and can be
utilized to effectively discriminate normal movements from
FOG episodes. For instance, Figure 4 shows the energy dis-
tribution from the detail wavelet coefficients.

As can be seen in Figure 4, the sub-band energies from
scale j = 4 to j = 1 of an FOG time series is profoundly
higher than that of a normal time series. In fact, their rel-
ative differences are higher than those manifested by the
approximations wavelet coefficients. As a result, to cap-
ture and segregate FOG point sequences from normal move-
ments, we select the detail wavelet coefficients from scale
j = 4 to j = 1 (i.e., dj = {d4, d3, d2, d1}), compute their detail
sub-band energies, and utilize them as feature vectors.

In summary, for each 1D decomposed accelerometer sig-

nal, we select its approximation wavelet coefficients at scale
j = 4 and its detail wavelet coefficients at scales j = 4 to
j = 1. The approximation and detail sub-band energies are
then computed from the selected coefficients and utilized as
feature vectors for our FOG prediction technique. Hence,
five features are extracted from each sensor. Since there are
three accelerometer sensors, the total amount of feature vec-
tors used is 15. In the next sections, we will describe how
these feature vectors are employed for FOG prediction.

3.4 Vector Quantization of Wavelet Feature Vec-
tors

The wavelet feature vectors collected in the previous sec-
tion consist of continuous feature vector values of the sig-
nals. Most of these values are unique. We utilize vector
quantization to eliminate redundancy and study the linear
and non-linear relationships between these feature vectors,
as well as their probability density functions. Specifically,
we employ vector quantization to approximate these contin-
uous feature vector values before they are used by the CRF
for prediction.

Given that x = {x1, x2,⋯, xd} is our d−dimensional real-
valued wavelet feature vector where d = 15, vector quantiza-
tion is the processes of mapping the wavelet feature vectors x
to another d−dimensional real-valued vector y. At such, we
say x is quantized by y. y is called a codeword and a finite set
of codewords is called a codebook C = {yi ∶ i = 1,2,3,⋯, L}.
The size of the codebook is denoted by L and it corresponds
to the number of codewords in a codebook C. Each code-
word yi corresponds to the centroid of a region or cell called
the voronoi region.

To build a codebook for our wavelet feature vectors, we
explore a codebook size of L = 32 and L = 64, and employ the
Linde-Buzo-Gray (LBG)[8] vector quantization algorithm to
partition the vector space Rd into L regions or cells. This
leads to the creation of several voronoi regions and their
corresponding codewords, which represent the centroids of
the voronoi regions. For each region Ci, we quantize any
wavelet feature vectors in that region as codeword of yi of
Ci. That is, we represent all feature vectors within a re-
gion with the codeword of the region. In the next section,
during the prediction of the onset of an FOG episode, all
wavelet feature vectors will be represented by their nearest
neighboring codewords.



4. FOG PREDICTIVE MODEL

4.1 CRF Introduction and FOG Modeling
A CRF [7] is a discriminative probabilistic graphical model

that can be utilized for statistical inference. It performs in-
ference by mapping an observation sequence X to a sequence
of labels Y . For the FOG prediction problem, we model our
CRF as follows. Given a dataset D consisting of all low level
Parkinson’s disease accelerometer sensor readings, after ex-
tracting signature spectral features through dyadic wavelet
transform and the vector quantization of the extracted spec-
tral feature vectors has been performed, we replace each
wavelet feature value with its corresponding centroid. Then,
we align the feature vectors from each reading of all the three
accelerometer sensors as an ordered observation sequence of
centroids X = {x1, x2⋯xT }, where each xi denotes a cen-
troid. Also, we create a set of candidate labels Y = {y1, y2} ,
where y1 refers to ”no freezing” (i.e., normal movement) and
y2 denotes freezing (i.e., an FOG episode). Generally, CRFs
are employed to determine the conditional probability of Y
given an observation sequence X (i.e., P (Y ∣X) ).

To determine P (Y ∣X) in a CRF, an undirected graph is
described using fully connected sub-graphs. Specifically, a
CRF is an undirected graph G = (V,E) with edges from yi−1
to yi, as well as edges from a state yi to any observation in
X. The edges of a CRF forms a fully connected sub-graphs
called a clique. The maximal clique C of a graph G can
be employed to compute the probability distribution of an
undirected graph. Specifically, the probability of an undi-
rected graph can be derived from the product of potential
functions Ψ(c) for each clique c over G. This is given by

P (V ) = 1

Z
∏
c

∈ CΨ(c) (2)

where Z is the normalization factor which ensures that
the probabilities sum to one. In this work, we utilize a lin-
ear chain CRF for FOG recognition. Since the cliques of a
CRF comprises of edges with yi−1 , yi and X, the potential
function for each clique in a linear chain CRF is given by
Ψ(c) = exp(i, yi−1, yi,X). Hence, P (Y ∣X) is given by

P (Y ∣X) = 1

Z(X)exp(wa ⋅
I

∏
i=1

fa (i, yi−1, yi,X)) (3)

where w is the feature weight and Z(X) is the normalization
factor which ensures that the probabilities sum to one. f is
the feature function. In the next section, we describe how f
is used for FOG prediction.

4.2 FOG Characteristics as CRF Features
Given a training dataset consisting of multiple sequence of

spectral centroids that originate from 3 accelerometer sen-
sors, our CRF learns the characteristics of the underlying
data by searching hidden patterns. That is, it searches for
elusive patterns from each sequence of centroids by investi-
gating the Markov property between two random centroid
variables. If a sequence occurs frequently and always result
to the same output yi, the behavior is stored using the fea-
ture function f and the behavior is investigated in other cen-
troid sequences. At the end of the data exploration process
by our CRF, numerous characteristics detected by different
feature functions are found. We should note that if a feature
occurs, we embed the feature to our CRF by assigning a real
value number of 1. Otherwise, zero is added.

4.3 Modeling FOG Sequences
To model our predictor, we formulate the problem of FOG

prediction as a sequential labeling task. Given an observa-
tion sequence O of centroids that represent vital signature
feature vectors of an FOG or normal time series, the ob-
jective is to find the most probable movement class, which
could have generated the observation sequence O.

Observation: As a recap, an accelerometer sensor mea-
sures the 3D motions of the subjects (i.e., at the x, y and
z axis). The observation of our CRF is derived from the

resultant time-domain motion signal M̂i of a tri-axial ac-
celerometer reading at a given time i. Formally, M̂i is given
by Equation 4.

M̂i =
√
(xi)2 + (yi)2 + (zi)2 (4)

Specifically, the observation sequence is derived from M̂i

by first performing dyadic wavelet transform of M̂i and ex-
tracting its feature vector. Then, to generate an observa-
tion sequence for our CRF, we use the codebook to replace
the latter continuous value feature vectors with their near-
est centroids. The sequence of the corresponding centroids
from the three sensors are used as the observation sequence
of our CRF.

4.4 FOG CRF Training
We employ Maximum Likelihood Estimation (MLE) and

a numerical optimization technique to learn the model pa-
rameter w by maximizing the conditional log-log likelihood
of the training data. To avoid over-fitting, we perform regu-
larization through the optimization of a penalized likelihood
using a Gaussian prior with a variance 0.5. We then per-
form gradient ascent to maximize the log likelihood. We
compute the gradient using Forward-Backward algorithm
and address the optimization task by employing the limited-
memory BFGS [9]. To predict an FOG episode from its
observation sequence O, our CRF utilizes the Viterbi algo-
rithm to compute the likelihood probability that an observa-
tion sequence O would yield a given movement output label.
The output movement label with the maximum likelihood
probability is considered as the predicted movement class.

5. EXPERIMENTS
In this section, we present the results of the empirical

evaluation of our FOG predictor. We conduct our experi-
ments on an Intel PC with 8GB RAM. Our FOG prediction
framework is implemented in Java. As previously alluded,
we utilize the Parkinson’s disease accelerometer dataset de-
scribed in Section 2.1 to perform our experiments. As a
recap, the dataset has two output classes. Namely, the nor-
mal and the FOG class. Our objective is to predict from the
low level accelerometer time series if a patient’s movement is
normal or an FOG episode. During our experimental evalu-
ations, to investigate the performance of our technique, we
emphasize on the ability of our framework to detect FOG
after τ seconds from its onset, where τ ranges from 2 to
6 seconds. In addition, we employ standard data mining
evaluation metrics like precision, recall and F1-measure to
evaluate the effectiveness of our technique.

5.1 Dataset Organization
The PD accelerometer dataset was extracted from 10 PD

patients. [2] mentioned that Patient 4 and Patient 10 did



Patient 1 (H&Y Stage 3) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 100 95.52 97.71 100 95.52 97.71
FOG 50 100 66.67 50 100 66.67

Overall 95.71 95.71

Patient 8 (H&Y Stage 4) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 86.36 90.48 88.37 85.71 85.71 85.71
FOG 66.67 57.14 61.54 57.14 57.14 57.14

Overall 82.14 78.57

Patient 9 (H&Y Stage 2) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 92.53 96.88 94.66 94.55 96.3 95.41
FOG 71.42 50.0 58.82 75.0 66.67 70.59

Overall 90.54 92.06

Table 1: Window Size = 512 : FOG Evaluation for Patient 1, Patient 8, Patient 9.

not experience any FOG episode during the 8.5 hours pe-
riod when the data was collected. As a result, we exclude
the multi sensor accelerometer data from Patient 4 and Pa-
tient 10, and conduct our experiments using data from 8 PD
patients. We train and test our FOG predictor for a given
patient by using only the accelerometer data collected from
the patient. Specifically, we place all the 3D accelerometer
readings of a single user in a given file. We then partition
the file into two sets. These include, the training set and
the test set. We allocate 75% of the data to the training set
while the remaining 25 % is used as the test set. We train
our model on the training set while the test set is employed
to predict a normal movement or FOG episode.

5.2 FOG Prediction
We perform our experiments using the approximation and

detail wavelet sub-band energies (i.e., a4, d4⋯d1) as wavelet
feature vectors. We observe that the performance of our
predictor depends on several parametric settings such as
the Window Size (w) and the Codebook Size L. We ex-
perimented with codebook sizes of L = 32 and L = 64. The
Window Size (w) refers to the length of the multi sensor
accelerometer time series that has to be segmented before
wavelet transform. That is, to extract feature vectors using
wavelet transform, we first segment raw accelerometer sig-
nals of a given class into a defined window size. Since we
utilize MODWT, the window size must not be to the power
of 2.

We select several window sizes depending on τ . Our aim
is to predict FOG, τ seconds after its onset. The PD ac-
celerometer dataset has a sampling rate of 64Hz. From the
dataset, we observe that the timestamps after every four
accelerometer readings is 47 milliseconds. This means 170
points correspond to accelerometer readings of τ = 2 seconds.
A window size of w = 170 is therefore used to measure our
prediction performance within 2 seconds. We also perform
experiments with w = 256 and w = 512 which correspond to
our prediction performances within approximately 3 seconds
and 6 seconds, respectively.

Towards this end, throughout this section, we investigate
our prediction based on the window sizes of w = 170,256,512.
For each window size, we analyze how the codebook sizes of
L = 32 and L = 64 affects the prediction performance. In
addition, [2] indicated that their technique had a lower per-
formance on FOG detection for Patient 1 and Patient 8, be-
cause Patient 1 has a different walking style that made it dif-
ficult for their technique to recognize walking from very shot
FOG episode, whereas Patient 8 is a patient with the most
advanced stage of Parkinson’s Disease and faces the greatest
challenge during walking. As a result of this, we elaborately
evaluate our FOG predictor on PD patients based on the
H&Y ratings of theirs PD stages. Patient 9 has stage 2 PD,
while Patient 1 and Patient 8 are at stage 3 and 4, respec-
tively. The severity of the PD increases with an increase in
the H&Y rating. Hence, we report our empirical evaluation
for Patient 1 and Patient 8 to demonstrate the effectiveness
of our predictive model on Parkinson’s disease patients with
advanced movement disorder. Also, we present our result
for Patient 9, who has an earlier stage Parkinson’s Disease.

Also, as previously mentioned, we report the precision
(Precision = TP /(TP + FP )) , recall (Recall = TP /(TP +
FN)) and the F1-Measure of our prediction results; where
TP , TN , FN and FP denote True Positive, True Negative,
False Negative and False Positive, respectively. The F1-
Measure is the harmonic mean of the precision and recall.
It is given by

F1 −Measure = 2Precision ×Recall
(Precision +Recall)

Besides, the overall performance of the prediction is given
by

Overall = correct

(correct + incorrect)
where correct denotes the total number of correctly pre-
dicted labels and incorrect refers to the total number of in-
correctly predicted labels. For our FOG prediction settings,
because the vast majority of the PD accelerometer time se-



Patient 1 (H&Y Stage 3) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 97.69 94.78 96.21 95.49 94.78 95.13
FOG 36.36 57.14 44.44 12.5 14.29 13.33

Overall 92.91 90.78

Patient 8 (H&Y Stage 4) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 83.33 95.24 88.89 87.5 83.33 85.37
FOG 77.78 46.67 58.33 58.82 66.67 62.5

Overall 82.46 78.95

Patient 9 (H&Y Stage 2) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 91.89 92.73 92.31 93.58 92.73 93.15
FOG 57.89 55.0 56.41 61.9 65.0 63.41

Overall 86.92 88.46

Table 2: Window Size = 256 : FOG Evaluation for Patient 1, Patient 8, Patient 9.

ries comprises of normal movement time series, while FOG
time series appears rarely, it is essential to verify the per-
centage of positive rarely occurring FOG episodes that are
correctly detected by the predictor. This can be captured
by investigating the recall of the FOG label. Hence, in the
next section, we will emphasize and highlight the recall of
the FOG label.

5.3 Prediction with Window Size of 512
Table 1 depicts our prediction results of Patient 1 for a

window size of w = 512, when using different codebook sizes.
For L = 32, we observe that our technique delivers an optimal
recall of 100 % for the FOG label. The normal label attains
a 95.52 % recall.

For the normal label, our approach achieve a precision of
100% and an F1-Measure of 97 .71 %. The FOG label has
a 50 % precision and a 66.67 % F1-Measure. We should
note that the drop in precision here is as a result of the sub-
mounatable amount of normal movement accelerometer time
series when compared to the few FOG time series, thereby
leading to an increase in the False Positives. We increase
the codebook size to L = 64 and the result does not change
(i.e., exactly similar to that of L = 32) as can be seen in
Table 1. A similar experiment with the same experimental
settings was conducted on Patient 8, who has the most ad-
vanced stage of Parkinson’s disease. We notice a 90.48 %
recall for the normal label and a lowered recall of 57.14 %
for the FOG label. Maybe the lowered FOG recall may have
resulted from the advanced stage of the patient’s PD. This
FOG recall can be improved by exploring different combi-
nations of wavelet feature vectors for stage 4 PD patients.
However, the overall prediction performance for Patient 8 is
82.14 %. On the other hand, an elevated precision and F1-
Measure of 86.36 % and 88.37 % are achieved for the normal
label. In comparison to Patient 1, the FOG label has a 16
% increase of precision. The recall and F1-Measure of the
FOG label of Patient 8 are 57.14 % and 61.54 %, respec-
tively. Table 1 shows the results when the codebook size is
increased to L = 64. Increasing the codebook size leads to a

3.57 % decrease in the overall prediction performance.
The detail prediction results of Patient 9 are illustrated

in Table 1 also. For a codebook size of L = 32, our tech-
nique delivers a recall of 96.88 % and a precision of 92.53
% for the normal label. The FOG label yields a 50 % recall
and a precision of 71.42 %. For this patient, increasing the
codebook size to L = 64 results in the increase of the overall
prediction performance from 90.54 % to 92.06 %.

5.4 Prediction with Window Size of 256
We use a window size of 256 samples during wavelet trans-

form to test FOG predictions within 3 seconds from an FOG
episode’s onset. Table 2 illustrates the prediction results.
First, we notice that a decrease in window size from w = 512
to w = 256 leads to an erosion in prediction performance.
Specifically, for L = 32, our predictive model produces an
overall prediction performance of 92.91% for Patient 1. This
is lower than that of w = 512 for the same patient. From
the prediction confusion matrix, the normal label produces
precision, recall and F1 measure of 97.69 %, 94.78% and
96.21 %, respectively. On the other hand, the FOG label
outputs a recall of 57.14%. Its corresponding precision and
F1-measure are 36.36% and 44.44 %, respectively. The table
also illustrates the prediction results for the codebook size
of L = 64. We observe an approximately 2% decrease of the
overall prediction performance to 90.78 %.

For Patient 8, our technique achieves an overall perfor-
mance of 82.46 % for L = 32, while for L = 64, it yields
an overall prediction performance of 78.95 %. Also, for this
settings, the FOG label shows a precision of 77.78 % for a
codebook size of L = 32, but when we increased the code-
book size to 64, we noticed a drop in precision to 58.823 %.
This shows that a codebook size of L = 32 performs better.
In contrast, for Patient 9, an increase in the codebook size
from L = 32 to L = 64 improves the overall prediction perfor-
mance from 86.92% to 88.46%. In particular, for L = 32, the
normal and FOG labels deliver a precision of 91.89 % and
57.89 %, respectively. Also, the increase in codebook size
prompts the precision to increase to 93.58 % and 61.9%,



Patient 1 (H&Y Stage 3) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 97.89 92.08 94.9 97.42 93.56 95.45
FOG 30.43 63.64 41.18 31.58 54.55 40.0

Overall 90.61 91.55

Patient 8 (H&Y Stage 4) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 77.61 81.25 79.39 80.6 84.38 82.44
FOG 36.84 31.82 34.15 47.37 40.91 43.90

Overall 68.60 73.26

Patient 9 (H&Y Stage 2) Codebook Size = 32 Codebook Size = 64

Precision Recall F1-Measure Precision Recall F1-Measure

Normal 88.13 85.45 86.77 88.69 90.30 89.49
FOG 31.43 36.67 33.85 40.74 36.67 38.6

Overall 77.95 82.05

Table 3: Window Size = 170 : FOG Evaluation for Patient 1, Patient 8, Patient 9.

respectively.

5.5 Prediction with Window Size of 170
A short window size of 170 samples corresponds to the ac-

celerometer time series for 2 seconds. Table 3 shows the em-
pirical prediction results for Patient 1, Patient 8 and Patient
9 using a window size of 170 and codebook sizes of L = 32 and
L = 64. Patient 1 attains an overall performance of 90.61%.
The best overall prediction peformancces of our technique
on Patient 8 and Patient 9 are 73.26% and 82.05% respec-
tively. Despite the good overall prediction performances for
such a short window size of w = 170, a detail look at the
FOG label recalls for both L = 32 and L = 64 show a drop
in the recalls. Specifically, a maximum FOG label recall of
63.64 % is obtained for Patient 1, while a minimum recall
of 31.82 % is recorded for Patient 8. The latter is a sharp
drop when compared to the 100% recall for w = 512. The
main reason for this decrease in the FOG recall is caused by
the decrease in window size. Using fewer samples decreases
the frequency resolution at which we can examine the sig-
nal during wavelet transform. Besides, it also leads to the
production of lesser salient regions in the wavelet modolus
maxima, which is pivotal in providing unique signature fea-
tures, that can be utilized to distinguish FOG signals from
normal movement signals.

5.6 Discussions
Our major take aways from the experiments reported in

Table 1 - Table 3 are as follows. For a short window size
of w = 170, a large codebook size of L = 64 yields the best
overall prediction result for PD patients at all stages. For
longer window sizes (i.e., w = 256 and w = 256 ), we observe
that the choice of the codebook size strongly depends on the
patients PD stages. Specifically, a codebook size of L = 64
works better for PD patients at stage 1, whereas a codebook
size of L = 32 performs better for advanced stage PD patients
(i.e., stage 3 and 4) as shown in Table 1 and Table 2.

For all window sizes, we observe that our FOG predictor
delivered the lowest results for the patient with the most
severe stage of PD (i.e., Patient 8). In addition, we no-
tice that as the window size increases, our predictive model
performs better. Also, for a short window size of 170, our

F1-Measures range from 38% to 43%. Based on wavelet the-
ory, if the accelerometer sensors sampling rate is increased
such that at least 512 samples can be taken within 2 seconds,
we believe our framework, which employs wavelet can pro-
duce near optimal FOG prediction results. Finally, we show
that our framework formidably predicts FOG by yielding the
best overall performances of 95.71%, 92.91% and 91.55% for
w = 512, w = 256 and w = 170, respectively.

6. CONCLUSIONS
We propose a novel predictive model for FOG prediction

that employs wavelets and CRF. We devise a new effective
approach to select unique signature wavelet feature vectors,
which are capable of distinguishing FOG time series from
normal movement time series. We craft a CRF-based FOG
predictive model that taps these signature feature vectors
to learn the underlying characteristic of FOG and normal
movement time series of Parkinson’s disease patients. Then,
during prediction, our predictive model utilizes the learned
patterns to predict FOG episodes with high veracity. We
demonstrate through numerous experiments that our tech-
nique predicts FOG with an overall performance of over
90%, depending on the window size.
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